El objetivo de la industria, reducir peso y aumentar seguridad.
Como consecuencia de la amplia variedad de aceros
que se utilizan en la fabricación de carrocerías de automóviles, es
necesario dividirlos en grupos. El criterio para esa división puede ser
en función de su límite elástico, límite de rotura, valores mecánicos o
incluso alargamiento. En este caso el criterio que se ha elegido para
clasificarlos ha sido en función de su límite elástico, resultando los
siguientes grupos:
Aceros Convencionales.
Aceros de Alta Resistencia.
Aceros de Muy Alta Resistencia.
Aceros de Ultra Alta Resistencia.
Acero Convencional (no estructural)
El acero convencional es un acero
dulce no aleado, laminado en frío y con un bajo contenido en carbono.
Este reducido contenido en carbono le proporciona unas buenas
características para el trabajo de deformación en prensas, pero por el
contrario su límite
elástico es demasiado bajo, por lo que se necesitan mayores espesores
para soportar los esfuerzos a los que se someten las distintas piezas, y
además en los paneles
exteriores se producen abolladuras con facilidad.
Empleo:
Su bajo límite elástico lo convierte en un material para usar en piezas
con baja responsabilidad estructural (aletas, paneles de puertas,
portones traseros, etc).
Aceros de Alta Resistencia
Estos aceros se clasifican en tres tipos en función del mecanismo de endurecimiento que se usa para aumentar su resistencia.
Aceros Bake-Hardening
Estos aceros han sido elaborados y tratados,
para conseguir un aumento significativo del límite elástico durante un
tratamiento térmico a baja temperatura, tal como una cocción de pintura.
La ganancia en su límite elástico conseguida por el tratamiento de
cocción, llamado efecto “Bake Hardening” (BH), es generalmente superior a
40 MPa. El efecto “Bake Hardening” ofrece una mejora en la resistencia a
la deformación y una reducción del espesor de la chapa para unas mismas
propiedades mecánicas.
Empleo:
Estos aceros están destinados a piezas de panelería exterior (puertas,
capós, portones, aletas delanteras y techo) y piezas estructurales para
el automóvil (bastidores inferiores, refuerzos y travesaños).
Reparación:
Durante el reconformado se deberá realizar un mayor esfuerzo, que si se tratara de una
pieza fabricada con acero convencional, debido a un límite elástico más
elevado. Mientras que su aptitud a la soldadura es buena sea cual sea el
método utilizado, al tener poca aleación.
Aceros Microaleados o Aceros ALE
Los Aceros Mircroaleados o Aceros ALE se
obtienen mediante la reducción del tamaño de grano y precipitación del
mismo, y en algunos casos, de forma selectiva se añaden otros elementos
de aleación como titanio, niobio o cromo que confieren propiedades de
dureza. Este tipo de aceros se caracterizan por una buena resistencia a
la fatiga, una buena resistencia al choque y una buena capacidad de
deformación en frío.
Empleo:
Estos aceros se destinan sobre todo para piezas interiores de la
estructura que requieren una elevada resistencia a la fatiga, como por
ejemplo los refuerzos de la suspensión, o refuerzos interiores. También
se pueden encontrar en largueros y travesaños.
Reparación:
Poseen una buena aptitud a la soldadura con cualquier procedimiento debido a su bajo
contenido de elementos de aleación, mientras que en el proceso de
reconformado se deberán realizar esfuerzos mayores como consecuencia de
su mayor límite elástico
en comparación con los aceros convencionales.
Aceros Refosforados o Aceros Aleados al Fósforo
Son aceros con una matriz ferrítica, que
contienen elementos de endurecimiento en la solución sólida, tales como
fósforo, cuya presencia puede ser de hasta un 0.12 %. Estos aceros se
caracterizan por ofrecer altos niveles de resistencia, conservando al
mismo tiempo una buena aptitud para la conformación por estampación.
Empleo:
Las piezas fabricadas con esta clase de acero se destinan a usos
múltiples, como piezas de estructuras o refuerzos que están sometidas a
fatiga, o piezas que deben intervenir en las colisiones como son
largueros, travesaños o refuerzos de pilares.
Reparación:
Siguiendo la tónica de los Aceros “Bake Hardening” y de los Aceros Microaleados el
proceso de reconformado requiere de la aplicación de unas fuerzas
mayores para recuperar la geometría inicial de la pieza. Con respecto al
proceso de soldadura reseñar que cualquier procedimiento es apto debido
a su bajo contenido en elementos aleantes.
Hot-dip galvanised dual-phase steels. (Aceros muy alta y ultra alta res.)
High-strength and ultrahigh-strength steel grades in a hot-dip
coated version, but also in electro-galvanised and cold-rolled
versions have been increasingly used in the automotive industry for many
years.
Multiphase steel grades with even higher strength values are referred
to as Advanced High Strength Steels (AHSS) owing to their excellent
prospects. In the family of multiphase steels which are listed in the
preliminary standard DIN EN 10336 (with hot-dip coated and/or
electrogalvanised surface), dual-phase steels are the most important
group.
Their extensive use was predicted for the first time in the late
1990s within the framework of the ULSAB projects and then documented,
among others, in "Atlas", a joint project by Salzgitter and Karman.
Figure 1: ULSAB study, portion of high-strength and ultrahigh-strength steels.
The reason for the increasing possible applications with OEMs
is that the vehicle weight is to be reduced by using thinner sheets and
that passenger safety is to be ensured at the same time.
The designation of dual-phase steel is derived from its
microstructure consisting of a ferritic (soft) matrix with a mainly
martensitic second phase (increasing the strength) embedded like
islands. This "soft-hard" combination gives the dual-phase steel a
relatively low yield strength with high tensile strength which is
positive for forming processes. This favourable ratio of mechanical
characteristics points towards correspondingly good ductility, which is
essential especially for complex components.
Figure 2 provides a schematic view of a microstructure.
Figure 2: Dual-phase structure, schematic view
This new family of steel grades opens up new applications for
structural parts to car manufacturers and their suppliers (e.g. side
members, crossmembers, columns, tunnels).
Even applications in the car skin (doors) are
perfectly conceivable, just as the use of these materials for so-called
machine-ready tubes that may also be used in car manufacture, possibly
following a hydroforming process.
High energy absorption in case of a possible crash takes the safety aspects into consideration.
Figure 3: Tunnel made of HCT600XD+Z from Salzgitter
Processing dual-phase steels in the forging press departments
of car manufacturers or their suppliers requires only slight
modifications as compared to ultrahigh-strength microalloyed steels that
have been used for a long time.
As compared with the latter, dual-phase steels stand out for their
considerably higher tensile strength, their bake hardening (endurecimiento por recocido) capability
and their high energy absorption capability in case of a car crash.
Since the FV2 (FV = German abbr. for hot-dip galvanising line) was
commissioned, Salzgitter Flachstahl is in a good position for developing
and producing corresponding steel grades. Hot-dip galvanised dual-phase
steels can be produced as described below.
Hot-dip galvanising line FV2 of Salzgitter Flachstahl GmbH
The strength-increasing phases of a martensitic
nature (cf. Figure 2) are created by quenching after annealing the
cold-rolled strip before feeding it into the zinc pot.
If partial hardening of the microstructure occurred
at an earlier stage, this would create problems in the downstream
process steps owing to the high material strength. This is why the
upstream hot-rolling mill produces a relatively soft microstructure
without martensite.
The last process step in dual-phase steel production, i.e. hot-dip galvanising, requires particular process control efforts.
This step produces hot-dip galvanised ultrahigh-strength strips which
will allow meeting the increasing requirements in car engineering
regarding weight reductions and passenger safety in the future.
An intense cooperation between Salzgitter Flachstahl and Salzgitter
Mannesmann Forschung in the meantime resulted in a clear expansion of
the available product range. The grades HCT450X to HCT600X are delivered
for series production and sample deliveries for the HCT800X have been
made.
Aceros HSS aleados con boro (BOR)
Piezas estructurales de la carroceria.
Interesante: cortando pilares de aceros HSS Excarcelación bomberos.